Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.113
Filtrar
1.
iScience ; 27(4): 109472, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558938

RESUMO

Clonal hematopoiesis (CH) is a risk factor for atherosclerotic cardiovascular disease, but the impact of smaller clones and the effect on inflammatory parameters is largely unknown. Using ultrasensitive single-molecule molecular inversion probe sequencing, we evaluated the association between CH and a first major adverse cardiovascular event (MACE) in patients with angiographically documented stable coronary artery disease (CAD) and no history of acute ischemic events. CH was associated with an increased rate of MACE at four years follow-up. The size of the clone predicted MACE at an optimal cut-off value of 1.07% variant allele frequency (VAF). Mutation carriers had no change in monocytes subsets or cytokine production capacity but had higher levels of circulating tissue factor, matrilysin, and proteinase-activated receptor-1. Our study identified CH driver mutations with a VAF as small as 1.07% as a residual cardiovascular risk factor and identified potential biomarkers and therapeutic targets for patients with stable CAD.

4.
Immunol Rev ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551324

RESUMO

Over the past decade, compelling evidence has unveiled previously overlooked adaptive characteristics of innate immune cells. Beyond their traditional role in providing short, non-specific protection against pathogens, innate immune cells can acquire antigen-agnostic memory, exhibiting increased responsiveness to secondary stimulation. This long-term de-facto innate immune memory, also termed trained immunity, is mediated through extensive metabolic rewiring and epigenetic modifications. While the upregulation of trained immunity proves advantageous in countering immune paralysis, its overactivation contributes to the pathogenesis of autoinflammatory and autoimmune disorders. In this review, we present the latest advancements in the field of innate immune memory followed by a description of the fundamental mechanisms underpinning trained immunity generation and different cell types that mediate it. Furthermore, we explore its implications for various diseases and examine current limitations and its potential therapeutic targeting in immune-related disorders.

5.
Crit Care ; 28(1): 73, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475786

RESUMO

BACKGROUND: Endotype classification may guide immunomodulatory management of patients with bacterial and viral sepsis. We aimed to identify immune endotypes and transitions associated with response to anakinra (human interleukin 1 receptor antagonist) in participants in the SAVE-MORE trial. METHODS: Adult patients hospitalized with radiological findings of PCR-confirmed severe pneumonia caused by SARS-CoV-2 and plasma-soluble urokinase plasminogen activator receptor levels of ≥ 6 ng/ml in the SAVE-MORE trial (NCT04680949) were characterized at baseline and days 4 and 7 of treatment using a previously defined 33-messenger RNA classifier to assign an immunological endotype in blood. Endpoints were changes in endotypes and progression to severe respiratory failure (SRF) associated with anakinra treatment. RESULTS: At baseline, 23.2% of 393 patients were designated as inflammopathic, 41.1% as adaptive, and 35.7% as coagulopathic. Only 23.9% were designated as the same endotype at days 4 and 7 compared to baseline, while all other patients transitioned between endotypes. Anakinra-treated patients were more likely to remain in the adaptive endotype during 7-day treatment (24.4% vs. 9.9%; p < 0.001). Anakinra also protected patients with coagulopathic endotype at day 7 against SRF compared to placebo (27.8% vs. 55.9%; p = 0.013). CONCLUSION: We identify an association between endotypes defined using blood transcriptome and anakinra therapy for COVID-19 pneumonia, with anakinra-treated patients shifting toward endotypes associated with a better outcome, mainly the adaptive endotype. Trial registration ClinicalTrials.gov, NCT04680949, December 23, 2020.


Assuntos
COVID-19 , Pneumonia , Adulto , Humanos , SARS-CoV-2 , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Pneumonia/tratamento farmacológico , Transcriptoma
6.
BMC Infect Dis ; 24(1): 337, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515037

RESUMO

BACKGROUND: Genetic variation underly inter-individual variation in host immune responses to infectious diseases, and may affect susceptibility or the course of signs and symptoms. METHODS: We performed genome-wide association studies in a prospective cohort of 1138 patients with physician-confirmed Lyme borreliosis (LB), the most common tick-borne disease in the Northern hemisphere caused by the bacterium Borrelia burgdorferi sensu lato. Genome-wide variants in LB patients-divided into a discovery and validation cohort-were compared to two healthy cohorts. Additionally, ex vivo monocyte-derived cytokine responses of peripheral blood mononuclear cells to several stimuli including Borrelia burgdorferi were performed in both LB patient and healthy control samples, as were stimulation experiments using mechanistic/mammalian target of rapamycin (mTOR) inhibitors. In addition, for LB patients, anti-Borrelia antibody responses were measured. Finally, in a subset of LB patients, gene expression was analysed using RNA-sequencing data from the ex vivo stimulation experiments. RESULTS: We identified a previously unknown genetic variant, rs1061632, that was associated with enhanced LB susceptibility. This polymorphism was an eQTL for KCTD20 and ETV7 genes, and its major risk allele was associated with upregulation of the mTOR pathway and cytokine responses, and lower anti-Borrelia antibody production. In addition, we replicated the recently reported SCGB1D2 locus that was suggested to have a protective effect on B. burgdorferi infection, and associated this locus with higher Borrelia burgdorferi antibody indexes and lower IL-10 responses. CONCLUSIONS: Susceptibility for LB was associated with higher anti-inflammatory responses and reduced anti-Borrelia antibody production, which in turn may negatively impact bacterial clearance. These findings provide important insights into the immunogenetic susceptibility for LB and may guide future studies on development of preventive or therapeutic measures. TRIAL REGISTRATION: The LymeProspect study was registered with the International Clinical Trials Registry Platform (NTR4998, registration date 2015-02-13).


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Doença de Lyme , Humanos , Estudo de Associação Genômica Ampla , Estudos Prospectivos , Leucócitos Mononucleares , Suscetibilidade a Doenças , Doença de Lyme/genética , Doença de Lyme/diagnóstico , Borrelia burgdorferi/genética , Citocinas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/uso terapêutico , Grupo Borrelia Burgdorferi/genética , Secretoglobinas/genética
7.
J Infect Dis ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446996

RESUMO

The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in, or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by Dectin-2. In conclusion, N-linked mannan is needed, in addition to ß-glucans, for an effective induction of trained immunity by C. albicans.

8.
Am J Hum Genet ; 111(4): 791-804, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503300

RESUMO

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Assuntos
Imunodeficiência Combinada Severa , Lactente , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Mutação/genética , Linfócitos T/metabolismo , Mutação de Sentido Incorreto/genética
9.
Virulence ; 15(1): 2333367, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515333

RESUMO

Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic ß-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.


Assuntos
Candida albicans , beta-Glucanas , Humanos , Candida albicans/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Monócitos/microbiologia , beta-Glucanas/metabolismo
10.
iScience ; 27(4): 109356, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510149

RESUMO

Familial Mediterranean fever (FMF) is a periodic fever syndrome caused by variation in MEFV. FMF is known for IL-1ß dysregulation, but the innate immune landscape of this disease has not been comprehensively described. Therefore, we studied circulating inflammatory proteins, and the function of monocytes and (albeit less extensively) neutrophils in treated FMF patients in remission. We found that monocyte IL-1ß and IL-6 production was enhanced upon stimulation, in concordance with alterations in the plasma inflammatory proteome. We did not observe changes in neutrophil functional assays. Subtle differences in chromatin accessibility and transcriptomics in our small patient cohort further argued for monocyte dysregulation. Together, these observations suggest that the MEFV-mutation-mediated primary immune dysregulation in monocytes leads to chronic inflammation that is subsequently associated with counterregulatory epigenetic/transcriptional changes reminiscent of tolerance. These data increase our understanding of the innate immune changes in FMF, aiding future management of chronic inflammation in these patients.

11.
Cell Rep ; 43(3): 113932, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457336

RESUMO

Innate immune cells can undergo long-term functional reprogramming after certain infections, a process called trained immunity (TI). Here, we focus on antigens of Leishmania braziliensis, which induced anti-tumor effects via trained immunity in human monocytes. We reveal that monocytes exposed to promastigote antigens of L. braziliensis develop an enhanced response to subsequent exposure to Toll-like receptor (TLR)2 or TLR4 ligands. Mechanistically, the induction of TI in monocytes by L. braziliensis is mediated by multiple pattern recognition receptors, changes in metabolism, and increased deposition of H3K4me3 at the promoter regions of immune genes. The administration of L. braziliensis exerts potent anti-tumor capabilities by delaying tumor growth and prolonging survival of mice with non-Hodgkin lymphoma. Our work reveals mechanisms of TI induced by L. braziliensis in vitro and identifies its potential for cancer immunotherapy.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Neoplasias , Humanos , Camundongos , Animais , Monócitos
12.
Immunol Lett ; 267: 106851, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38479480

RESUMO

Bacillus Calmette-Guérin (BCG) vaccination induces memory characteristics in innate immune cells and their progenitors, a process called trained immunity mediated by epigenetic and metabolic reprogramming. Cholesterol synthesis plays an amplifying role in trained immunity through mevalonate release. Nitrogen-containing bisphosphonates (N-BPs), such as alendronate, can inhibit cholesterol synthesis. We explored their effects on trained immunity induced by BCG in a placebo-controlled clinical study (NL74082.091.20) in young, healthy individuals. Participants receiving single-dose oral alendronate on the day of BCG vaccination had more neutrophils and plasma cells one month after treatment. Alendronate led to reduced proinflammatory cytokine production by PBMCs stimulated with heterologous bacterial and viral stimuli one month later. Furthermore, the addition of alendronate transcriptionally suppressed multiple immune response pathways in PBMCs upon stimulation. Our findings indicate that N-BPs modulate the long-lasting effects of BCG vaccination on the cytokine production capacity of innate immune cells.

13.
FEBS J ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468589

RESUMO

Dysregulation and hyperactivation of innate immune responses can lead to the onset of systemic autoinflammatory diseases. Monogenic autoinflammatory diseases are caused by inborn genetic errors and based on molecular mechanisms at play, can be divided into inflammasomopathies, interferonopathies, relopathies, protein misfolding, and endogenous antagonist deficiencies. On the other hand, more common autoinflammatory diseases are multifactorial, with both genetic and non-genetic factors playing an important role. During the last decade, long-term memory characteristics of innate immune responses have been described (also called trained immunity) that in physiological conditions provide enhanced host protection from pathogenic re-infection. However, if dysregulated, induction of trained immunity can become maladaptive, perpetuating chronic inflammatory activation. Here, we describe the mechanisms of genetic and epigenetic dysregulation of the innate immune system and maladaptive trained immunity that leads to the onset and perpetuation of the most common and recently described systemic autoinflammatory diseases.

14.
Mech Ageing Dev ; 218: 111916, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364983

RESUMO

In old age, impaired immunity causes high susceptibility to infections and cancer, higher morbidity and mortality, and poorer vaccination efficiency. Many factors, such as genetics, diet, and lifestyle, impact aging. This study aimed to investigate how immune responses change with age in healthy Dutch and Tanzanian individuals and identify common metabolites associated with an aged immune profile. We performed untargeted metabolomics from plasma to identify age-associated metabolites, and we correlated their concentrations with ex-vivo cytokine production by immune cells, DNA methylation-based epigenetic aging, and telomere length. Innate immune responses were impacted differently by age in Dutch and Tanzanian cohorts. Age-related decline in steroid hormone precursors common in both populations was associated with higher systemic inflammation and lower cytokine responses. Hippurate and 2-phenylacetamide, commonly more abundant in older individuals, were negatively correlated with cytokine responses and telomere length and positively correlated with epigenetic aging. Lastly, we identified several metabolites that might contribute to the stronger decline in innate immunity with age in Tanzanians. The shared metabolomic signatures of the two cohorts suggest common mechanisms of immune aging, revealing metabolites with potential contributions. These findings also reflect genetic or environmental effects on circulating metabolites that modulate immune responses.


Assuntos
Envelhecimento , População da África Oriental , População Europeia , Idoso , Humanos , Citocinas , Imunidade Inata , Metaboloma
15.
Clin Immunol ; 261: 109930, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38342415

RESUMO

While the efficacy of many current vaccines is well-established, various factors can diminish their effectiveness, particularly in vulnerable groups. Amidst emerging pandemic threats, enhancing vaccine responses is critical. Our review synthesizes insights from immunology and epidemiology, focusing on the concept of trained immunity (TRIM) and the non-specific effects (NSEs) of vaccines that confer heterologous protection. We elucidate the mechanisms driving TRIM, emphasizing its regulation through metabolic and epigenetic reprogramming in innate immune cells. Notably, we explore the extended protective scope of vaccines like BCG and COVID-19 vaccines against unrelated infections, underscoring their role in reducing neonatal mortality and combating diseases like malaria and yellow fever. We also highlight novel strategies to boost vaccine efficacy, incorporating TRIM inducers into vaccine formulations to enhance both specific and non-specific immune responses. This approach promises significant advancements in vaccine development, aiming to improve global public health outcomes, especially for the elderly and immunocompromised populations.


Assuntos
Vacinas contra COVID-19 , Vacinas , Recém-Nascido , Humanos , Idoso , Vacina BCG , Imunidade Treinada , Imunidade Inata , Memória Imunológica , Desenvolvimento de Vacinas
16.
Ann Rheum Dis ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373842

RESUMO

INTRODUCTION: Untreated gout is characterised by monosodium urate (MSU) crystal accumulation responsible for recurrent flares that are commonly separated by asymptomatic phases. Both phases are inflammatory conditions of variable intensity. Gout flares are self-limited inflammatory reactions involving multiple mediators. This study aimed to characterise the inflammatory profiles of gout at different phases. METHODS: Using the Olink targeted proteomics, levels of 92 inflammation-related proteins were measured in plasma samples of a prospective gout population (GOUTROS), collected at gout flare (T1), the intercritical phase (T2) and after reaching the target serum urate level under urate-lowering therapy (T3). Results were validated in an independent cohort (OLT1177-05) with plasmas collected at T1 and T2. Ex vivo and in vitro experiments were performed to assess the inflammatory properties of new biomarkers. RESULTS: In total, 21 inflammatory new biomarkers were differentially expressed during the three time-points of gout disease. The levels of four of these proteins (interleukin 6 (IL-6), colony-stimulating factor 1, vascular endothelial growth factor A and tumour necrosis factor superfamily 14 (TNFSF14)) were increased during gout flare in an independent cohort. IL-6 and TNFSF14 had the highest fold change in expression during T1 versus T2 or T3. TNFSF14 was produced at the inflamed joint and enhanced the inflammatory response induced by lipopolysaccharide and MSU crystal stimulation. Conversely, TNFSF14 blockade reduced the inflammatory response. Additionally, single nucleotide polymorphisms of TNFSF14 affected the ability of myeloid cells to produce inflammatory cytokines. CONCLUSION: Gout flare involves multiple inflammatory mediators that may be used as potential therapeutic targets.

17.
Mycopathologia ; 189(2): 24, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407673

RESUMO

OBJECTIVES: Invasive aspergillosis (IA) is a major cause of mortality in immunocompromised patients and it is difficult to diagnose because of the lack of reliable highly sensitive diagnostics. We aimed to identify circulating immunological markers that could be useful for an early diagnosis of IA. METHODS: We collected longitudinally serum samples from 33 cases with probable/proven IA and two matched control cohorts without IA (one with microbiological and clinical evidence of bacterial or viral non-fungal pneumonia and one without evidence of infection, all matched for neutropenia, primary underlying disease, and receipt of corticosteroids/other immunosuppressants) at a tertiary university hospital. In addition, samples from an independent cohort (n = 20 cases of proven/probable IA and 20 matched controls without infection) were obtained. A panel of 92 circulating proteins involved in inflammation was measured by proximity extension assay. A random forest model was used to predict the development of IA using biomarkers measured before diagnosis. RESULTS: While no significant differences were observed between IA cases and infected controls, concentrations of 30 inflammatory biomarkers were different between cases and non-infected controls, of which nine were independently replicated: PD-L1, MMP-10, Interleukin(IL)-10, IL-15RA, IL-18, IL-18R1, CDCP1, CCL19 and IL-17C. From the differential abundance analysis of serum samples collected more than 10 days before diagnosis and at diagnosis, increased IL-17C concentrations in IA patients were replicated in the independent cohort. CONCLUSIONS: An increased circulating concentration of IL-17C was detected both in the discovery and independent cohort, both at the time of diagnosis and in samples 10 days before the diagnosis of IA, suggesting it should be evaluated further as potential (early) biomarker of infection.


Assuntos
Aspergilose , Neoplasias Hematológicas , Humanos , Interleucina-17 , Neoplasias Hematológicas/complicações , Aspergilose/diagnóstico , Bioensaio , Hospitais Universitários , Antígenos de Neoplasias , Moléculas de Adesão Celular
18.
Front Immunol ; 15: 1323333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415247

RESUMO

Candida albicans cell wall component ß-glucan has been extensively studied for its ability to induce epigenetic and functional reprogramming of innate immune cells, a process termed trained immunity. We show that a high-complexity blend of two individual ß-glucans from Saccharomyces cerevisiae possesses strong bioactivity, resulting in an enhanced trained innate immune response by human primary monocytes. The training required the Dectin-1/CR3, TLR4, and MMR receptors, as well as the Raf-1, Syk, and PI3K downstream signaling molecules. By activating multiple receptors and downstream signaling pathways, the components of this ß-glucan preparation are able to act synergistically, causing a robust secondary response upon an unrelated challenge. In in-vivo murine models of melanoma and bladder cell carcinoma, pre-treatment of mice with the ß-glucan preparation led to a significant reduction in tumor growth. These insights may aid in the development of future therapies based on ß-glucan structures that induce an effective trained immunity response.


Assuntos
Saccharomyces cerevisiae , beta-Glucanas , Humanos , Animais , Camundongos , Imunidade Treinada , beta-Glucanas/farmacologia , Monócitos , Transdução de Sinais
19.
Sci Rep ; 14(1): 3911, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366085

RESUMO

The lack of standardization in the methods of DNA extraction from fecal samples represents the major source of experimental variation in the microbiome research field. In this study, we aimed to compare the metagenomic profiles and microbiome-phenotype associations obtained by applying two commercially available DNA extraction kits: the AllPrep DNA/RNA Mini Kit (APK) and the QIAamp Fast DNA Stool Mini Kit (FSK). Using metagenomic sequencing data available from 745 paired fecal samples from two independent population cohorts, Lifelines-DEEP (LLD, n = 292) and the 500 Functional Genomics project (500FG, n = 453), we confirmed significant differences in DNA yield and the recovered microbial communities between protocols, with the APK method resulting in a higher DNA concentration and microbial diversity. Further, we observed a massive difference in bacterial relative abundances at species-level between the APK and the FSK protocols, with > 75% of species differentially abundant between protocols in both cohorts. Specifically, comparison with a standard mock community revealed that the APK method provided higher accuracy in the recovery of microbial relative abundances, with the absence of a bead-beating step in the FSK protocol causing an underrepresentation of gram-positive bacteria. This heterogeneity in the recovered microbial composition led to remarkable differences in the association with anthropometric and lifestyle phenotypes. The results of this study further reinforce that the choice of DNA extraction method impacts the metagenomic profile of human gut microbiota and highlight the importance of harmonizing protocols in microbiome studies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , DNA Bacteriano/genética , DNA Bacteriano/análise , RNA Ribossômico 16S/genética , DNA , Microbiota/genética , Microbioma Gastrointestinal/genética , Análise de Sequência de DNA , Fezes/microbiologia , Metagenômica/métodos
20.
BMC Genomics ; 25(1): 154, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326779

RESUMO

BACKGROUND: Significant differences in immune responses, prevalence or susceptibility of diseases and treatment responses have been described between males and females. Despite this, sex-differentiation analysis of the genetic architecture of inflammatory proteins is largely unexplored. We performed sex-stratified meta-analysis after protein quantitative trait loci (pQTL) mapping using inflammatory biomarkers profiled using targeted proteomics (Olink inflammatory panel) of two population-based cohorts of Europeans. RESULTS: Even though, around 67% of the pQTLs demonstrated shared effect between sexes, colocalization analysis identified two loci in the males (LINC01135 and ITGAV) and three loci (CNOT10, SRD5A2, and LILRB5) in the females with evidence of sex-dependent modulation by pQTL variants. Furthermore, we identified pathways with relevant functions in the sex-biased pQTL variants. We also showed through cross-validation that the sex-specific pQTLs are linked with sex-specific phenotypic traits. CONCLUSION: Our study demonstrates the relevance of genetic sex-stratified analysis in the context of genetic dissection of protein abundances among individuals and reveals that, sex-specific pQTLs might mediate sex-linked phenotypes. Identification of sex-specific pQTLs associated with sex-biased diseases can help realize the promise of individualized treatment.


Assuntos
Proteínas , Locos de Características Quantitativas , Masculino , Feminino , Humanos , Proteínas/genética , Fenótipo , Biomarcadores , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Receptores Imunológicos/genética , Antígenos CD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...